Step |
Hyp |
Ref |
Expression |
1 |
|
axrepnd |
⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
2 |
|
df-ex |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ↔ ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) |
3 |
|
df-an |
⊢ ( ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ↔ ¬ ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) |
4 |
3
|
exbii |
⊢ ( ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ↔ ∃ 𝑥 ¬ ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) |
5 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ↔ ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) |
6 |
4 5
|
bitri |
⊢ ( ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ↔ ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) |
7 |
6
|
bibi2i |
⊢ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) ) |
8 |
|
dfbi1 |
⊢ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) ↔ ¬ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧 ∈ 𝑥 ) ) ) |
9 |
7 8
|
bitri |
⊢ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ↔ ¬ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧 ∈ 𝑥 ) ) ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧 ∈ 𝑥 ) ) ) |
11 |
2 10
|
imbi12i |
⊢ ( ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧 ∈ 𝑥 ) ) ) ) |
12 |
11
|
exbii |
⊢ ( ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ∃ 𝑥 ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧 ∈ 𝑥 ) ) ) ) |
13 |
|
df-ex |
⊢ ( ∃ 𝑥 ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧 ∈ 𝑥 ) ) ) ↔ ¬ ∀ 𝑥 ¬ ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧 ∈ 𝑥 ) ) ) ) |
14 |
12 13
|
bitri |
⊢ ( ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ¬ ∀ 𝑥 ¬ ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧 ∈ 𝑥 ) ) ) ) |
15 |
1 14
|
mpbi |
⊢ ¬ ∀ 𝑥 ¬ ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧 ∈ 𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧 ∈ 𝑥 ) ) ) |