Metamath Proof Explorer


Theorem axrepprim

Description: ax-rep without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010)

Ref Expression
Assertion axrepprim ¬ ∀ 𝑥 ¬ ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 axrepnd 𝑥 ( ∃ 𝑦𝑧 ( 𝜑𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥𝑦 ∧ ∀ 𝑦 𝜑 ) ) )
2 df-ex ( ∃ 𝑦𝑧 ( 𝜑𝑧 = 𝑦 ) ↔ ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) )
3 df-an ( ( ∀ 𝑧 𝑥𝑦 ∧ ∀ 𝑦 𝜑 ) ↔ ¬ ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) )
4 3 exbii ( ∃ 𝑥 ( ∀ 𝑧 𝑥𝑦 ∧ ∀ 𝑦 𝜑 ) ↔ ∃ 𝑥 ¬ ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) )
5 exnal ( ∃ 𝑥 ¬ ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ↔ ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) )
6 4 5 bitri ( ∃ 𝑥 ( ∀ 𝑧 𝑥𝑦 ∧ ∀ 𝑦 𝜑 ) ↔ ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) )
7 6 bibi2i ( ( ∀ 𝑦 𝑧𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥𝑦 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( ∀ 𝑦 𝑧𝑥 ↔ ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) )
8 dfbi1 ( ( ∀ 𝑦 𝑧𝑥 ↔ ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) ↔ ¬ ( ( ∀ 𝑦 𝑧𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧𝑥 ) ) )
9 7 8 bitri ( ( ∀ 𝑦 𝑧𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥𝑦 ∧ ∀ 𝑦 𝜑 ) ) ↔ ¬ ( ( ∀ 𝑦 𝑧𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧𝑥 ) ) )
10 9 albii ( ∀ 𝑧 ( ∀ 𝑦 𝑧𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥𝑦 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧𝑥 ) ) )
11 2 10 imbi12i ( ( ∃ 𝑦𝑧 ( 𝜑𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧𝑥 ) ) ) )
12 11 exbii ( ∃ 𝑥 ( ∃ 𝑦𝑧 ( 𝜑𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ∃ 𝑥 ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧𝑥 ) ) ) )
13 df-ex ( ∃ 𝑥 ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧𝑥 ) ) ) ↔ ¬ ∀ 𝑥 ¬ ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧𝑥 ) ) ) )
14 12 13 bitri ( ∃ 𝑥 ( ∃ 𝑦𝑧 ( 𝜑𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ¬ ∀ 𝑥 ¬ ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧𝑥 ) ) ) )
15 1 14 mpbi ¬ ∀ 𝑥 ¬ ( ¬ ∀ 𝑦 ¬ ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) → ∀ 𝑧 ¬ ( ( ∀ 𝑦 𝑧𝑥 → ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) ) → ¬ ( ¬ ∀ 𝑥 ( ∀ 𝑧 𝑥𝑦 → ¬ ∀ 𝑦 𝜑 ) → ∀ 𝑦 𝑧𝑥 ) ) )