| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axunnd | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) | 
						
							| 2 |  | df-an | ⊢ ( ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  ↔  ¬  ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 ) ) | 
						
							| 3 | 2 | exbii | ⊢ ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  ↔  ∃ 𝑥 ¬  ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 ) ) | 
						
							| 4 |  | exnal | ⊢ ( ∃ 𝑥 ¬  ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 )  ↔  ¬  ∀ 𝑥 ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 ) ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  ↔  ¬  ∀ 𝑥 ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 ) ) | 
						
							| 6 | 5 | imbi1i | ⊢ ( ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 )  ↔  ( ¬  ∀ 𝑥 ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 7 | 6 | albii | ⊢ ( ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 )  ↔  ∀ 𝑦 ( ¬  ∀ 𝑥 ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 8 | 7 | exbii | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 )  ↔  ∃ 𝑥 ∀ 𝑦 ( ¬  ∀ 𝑥 ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 9 |  | df-ex | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( ¬  ∀ 𝑥 ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 )  ↔  ¬  ∀ 𝑥 ¬  ∀ 𝑦 ( ¬  ∀ 𝑥 ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 10 | 8 9 | bitri | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 )  ↔  ¬  ∀ 𝑥 ¬  ∀ 𝑦 ( ¬  ∀ 𝑥 ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 11 | 1 10 | mpbi | ⊢ ¬  ∀ 𝑥 ¬  ∀ 𝑦 ( ¬  ∀ 𝑥 ( 𝑦  ∈  𝑥  →  ¬  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) |