Metamath Proof Explorer


Theorem axunprim

Description: ax-un without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010)

Ref Expression
Assertion axunprim ¬ ∀ 𝑥 ¬ ∀ 𝑦 ( ¬ ∀ 𝑥 ( 𝑦𝑥 → ¬ 𝑥𝑧 ) → 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 axunnd 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 )
2 df-an ( ( 𝑦𝑥𝑥𝑧 ) ↔ ¬ ( 𝑦𝑥 → ¬ 𝑥𝑧 ) )
3 2 exbii ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) ↔ ∃ 𝑥 ¬ ( 𝑦𝑥 → ¬ 𝑥𝑧 ) )
4 exnal ( ∃ 𝑥 ¬ ( 𝑦𝑥 → ¬ 𝑥𝑧 ) ↔ ¬ ∀ 𝑥 ( 𝑦𝑥 → ¬ 𝑥𝑧 ) )
5 3 4 bitri ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) ↔ ¬ ∀ 𝑥 ( 𝑦𝑥 → ¬ 𝑥𝑧 ) )
6 5 imbi1i ( ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) ↔ ( ¬ ∀ 𝑥 ( 𝑦𝑥 → ¬ 𝑥𝑧 ) → 𝑦𝑥 ) )
7 6 albii ( ∀ 𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) ↔ ∀ 𝑦 ( ¬ ∀ 𝑥 ( 𝑦𝑥 → ¬ 𝑥𝑧 ) → 𝑦𝑥 ) )
8 7 exbii ( ∃ 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) ↔ ∃ 𝑥𝑦 ( ¬ ∀ 𝑥 ( 𝑦𝑥 → ¬ 𝑥𝑧 ) → 𝑦𝑥 ) )
9 df-ex ( ∃ 𝑥𝑦 ( ¬ ∀ 𝑥 ( 𝑦𝑥 → ¬ 𝑥𝑧 ) → 𝑦𝑥 ) ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑦 ( ¬ ∀ 𝑥 ( 𝑦𝑥 → ¬ 𝑥𝑧 ) → 𝑦𝑥 ) )
10 8 9 bitri ( ∃ 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑦 ( ¬ ∀ 𝑥 ( 𝑦𝑥 → ¬ 𝑥𝑧 ) → 𝑦𝑥 ) )
11 1 10 mpbi ¬ ∀ 𝑥 ¬ ∀ 𝑦 ( ¬ ∀ 𝑥 ( 𝑦𝑥 → ¬ 𝑥𝑧 ) → 𝑦𝑥 )