Step |
Hyp |
Ref |
Expression |
1 |
|
axunnd |
⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |
2 |
|
df-an |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ↔ ¬ ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) ) |
3 |
2
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ↔ ∃ 𝑥 ¬ ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) ) |
4 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) ↔ ¬ ∀ 𝑥 ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) ) |
5 |
3 4
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ↔ ¬ ∀ 𝑥 ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) ) |
6 |
5
|
imbi1i |
⊢ ( ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ↔ ( ¬ ∀ 𝑥 ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ¬ ∀ 𝑥 ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ¬ ∀ 𝑥 ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
9 |
|
df-ex |
⊢ ( ∃ 𝑥 ∀ 𝑦 ( ¬ ∀ 𝑥 ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑦 ( ¬ ∀ 𝑥 ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
10 |
8 9
|
bitri |
⊢ ( ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑦 ( ¬ ∀ 𝑥 ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
11 |
1 10
|
mpbi |
⊢ ¬ ∀ 𝑥 ¬ ∀ 𝑦 ( ¬ ∀ 𝑥 ( 𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |