| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axunndlem1 | ⊢ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 ) | 
						
							| 2 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 5 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 6 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑦 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑤 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 9 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 11 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑤 ) | 
						
							| 12 | 10 11 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑦  ∈  𝑤 ) | 
						
							| 13 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 15 | 11 14 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑤  ∈  𝑧 ) | 
						
							| 16 | 12 15 | nfand | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 ) ) | 
						
							| 17 | 8 16 | nfexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 ) ) | 
						
							| 18 | 17 12 | nfimd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 ) ) | 
						
							| 19 | 7 18 | nfald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 ) ) | 
						
							| 20 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑦 𝑤 ) | 
						
							| 21 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 23 | 20 22 | nfeqd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑦 𝑤  =  𝑥 ) | 
						
							| 24 | 7 23 | nfan1 | ⊢ Ⅎ 𝑦 ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 ) | 
						
							| 25 |  | elequ2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑦  ∈  𝑤  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 26 |  | elequ1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ∈  𝑧  ↔  𝑥  ∈  𝑧 ) ) | 
						
							| 27 | 25 26 | anbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 )  ↔  ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) ) | 
						
							| 28 | 27 | a1i | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑤  =  𝑥  →  ( ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 )  ↔  ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) ) ) | 
						
							| 29 | 4 16 28 | cbvexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 )  ↔  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 )  ↔  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) ) | 
						
							| 31 | 25 | adantl | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( 𝑦  ∈  𝑤  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 32 | 30 31 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 )  ↔  ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 33 | 24 32 | albid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 )  ↔  ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑤  =  𝑥  →  ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 )  ↔  ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 35 | 4 19 34 | cbvexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 )  ↔  ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 36 | 1 35 | mpbii | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 37 | 36 | ex | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 38 |  | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 39 |  | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 40 |  | elirrv | ⊢ ¬  𝑦  ∈  𝑦 | 
						
							| 41 |  | elequ2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑦  ∈  𝑥  ↔  𝑦  ∈  𝑦 ) ) | 
						
							| 42 | 40 41 | mtbiri | ⊢ ( 𝑥  =  𝑦  →  ¬  𝑦  ∈  𝑥 ) | 
						
							| 43 | 42 | intnanrd | ⊢ ( 𝑥  =  𝑦  →  ¬  ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) | 
						
							| 44 | 43 | sps | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ¬  ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) | 
						
							| 45 | 39 44 | nexd | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ¬  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) | 
						
							| 46 | 45 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 47 | 38 46 | alrimi | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 48 | 47 | 19.8ad | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 49 |  | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 50 |  | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 51 |  | elirrv | ⊢ ¬  𝑧  ∈  𝑧 | 
						
							| 52 |  | elequ1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝑧  ↔  𝑧  ∈  𝑧 ) ) | 
						
							| 53 | 51 52 | mtbiri | ⊢ ( 𝑥  =  𝑧  →  ¬  𝑥  ∈  𝑧 ) | 
						
							| 54 | 53 | intnand | ⊢ ( 𝑥  =  𝑧  →  ¬  ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) | 
						
							| 55 | 54 | sps | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ¬  ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) | 
						
							| 56 | 50 55 | nexd | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ¬  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) | 
						
							| 57 | 56 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 58 | 49 57 | alrimi | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 59 | 58 | 19.8ad | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 60 | 37 48 59 | pm2.61ii | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) |