Step |
Hyp |
Ref |
Expression |
1 |
|
axunndlem1 |
⊢ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) |
2 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
3 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 |
4 |
2 3
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
5 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
6 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑧 |
7 |
5 6
|
nfan |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
8 |
|
nfv |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
9 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) |
10 |
9
|
adantr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
11 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) |
12 |
10 11
|
nfeld |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ∈ 𝑤 ) |
13 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑧 ) |
14 |
13
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ) |
15 |
11 14
|
nfeld |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ∈ 𝑧 ) |
16 |
12 15
|
nfand |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ) |
17 |
8 16
|
nfexd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ) |
18 |
17 12
|
nfimd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
19 |
7 18
|
nfald |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
20 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 ) |
21 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ) |
22 |
21
|
adantr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
23 |
20 22
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 = 𝑥 ) |
24 |
7 23
|
nfan1 |
⊢ Ⅎ 𝑦 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) |
25 |
|
elequ2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
26 |
|
elequ1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) |
27 |
25 26
|
anbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
28 |
27
|
a1i |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) ) |
29 |
4 16 28
|
cbvexd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
30 |
29
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
31 |
25
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
32 |
30 31
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
33 |
24 32
|
albid |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
34 |
33
|
ex |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
35 |
4 19 34
|
cbvexd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
36 |
1 35
|
mpbii |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
37 |
36
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
38 |
|
nfae |
⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥 = 𝑦 |
39 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑦 |
40 |
|
elirrv |
⊢ ¬ 𝑦 ∈ 𝑦 |
41 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
42 |
40 41
|
mtbiri |
⊢ ( 𝑥 = 𝑦 → ¬ 𝑦 ∈ 𝑥 ) |
43 |
42
|
intnanrd |
⊢ ( 𝑥 = 𝑦 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
44 |
43
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
45 |
39 44
|
nexd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
46 |
45
|
pm2.21d |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
47 |
38 46
|
alrimi |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
48 |
47
|
19.8ad |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
49 |
|
nfae |
⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥 = 𝑧 |
50 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑧 |
51 |
|
elirrv |
⊢ ¬ 𝑧 ∈ 𝑧 |
52 |
|
elequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧 ) ) |
53 |
51 52
|
mtbiri |
⊢ ( 𝑥 = 𝑧 → ¬ 𝑥 ∈ 𝑧 ) |
54 |
53
|
intnand |
⊢ ( 𝑥 = 𝑧 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
55 |
54
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
56 |
50 55
|
nexd |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
57 |
56
|
pm2.21d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
58 |
49 57
|
alrimi |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
59 |
58
|
19.8ad |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
60 |
37 48 59
|
pm2.61ii |
⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |