| Step | Hyp | Ref | Expression | 
						
							| 1 |  | en2lp | ⊢ ¬  ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) | 
						
							| 2 |  | elequ2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 ) ) | 
						
							| 3 | 2 | anbi2d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑦 )  ↔  ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) ) | 
						
							| 4 | 1 3 | mtbii | ⊢ ( 𝑦  =  𝑧  →  ¬  ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) | 
						
							| 5 | 4 | sps | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ¬  ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) | 
						
							| 6 | 5 | nexdv | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ¬  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) | 
						
							| 7 | 6 | pm2.21d | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 8 | 7 | axc4i | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 9 | 8 | 19.8ad | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 10 |  | zfun | ⊢ ∃ 𝑥 ∀ 𝑤 ( ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 ) | 
						
							| 11 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 12 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 13 |  | nfvd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 𝑤  ∈  𝑥 ) | 
						
							| 14 |  | nfcvf | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 𝑧 ) | 
						
							| 15 | 14 | nfcrd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 𝑥  ∈  𝑧 ) | 
						
							| 16 | 13 15 | nfand | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) | 
						
							| 17 | 12 16 | nfexd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) | 
						
							| 18 | 17 13 | nfimd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 ( ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 ) ) | 
						
							| 19 |  | elequ1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  𝑥  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 20 | 19 | anbi1d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  ↔  ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) ) | 
						
							| 21 | 20 | exbidv | ⊢ ( 𝑤  =  𝑦  →  ( ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  ↔  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 ) ) ) | 
						
							| 22 | 21 19 | imbi12d | ⊢ ( 𝑤  =  𝑦  →  ( ( ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 )  ↔  ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 23 | 22 | a1i | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( 𝑤  =  𝑦  →  ( ( ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 )  ↔  ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 24 | 11 18 23 | cbvald | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑤 ( ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 )  ↔  ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 25 | 24 | exbidv | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ∃ 𝑥 ∀ 𝑤 ( ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 )  ↔  ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 26 | 10 25 | mpbii | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 27 | 9 26 | pm2.61i | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) |