Metamath Proof Explorer


Theorem axunndlem1

Description: Lemma for the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion axunndlem1 xyxyxxzyx

Proof

Step Hyp Ref Expression
1 en2lp ¬yxxy
2 elequ2 y=zxyxz
3 2 anbi2d y=zyxxyyxxz
4 1 3 mtbii y=z¬yxxz
5 4 sps yy=z¬yxxz
6 5 nexdv yy=z¬xyxxz
7 6 pm2.21d yy=zxyxxzyx
8 7 axc4i yy=zyxyxxzyx
9 8 19.8ad yy=zxyxyxxzyx
10 zfun xwxwxxzwx
11 nfnae y¬yy=z
12 nfnae x¬yy=z
13 nfvd ¬yy=zywx
14 nfcvf ¬yy=z_yz
15 14 nfcrd ¬yy=zyxz
16 13 15 nfand ¬yy=zywxxz
17 12 16 nfexd ¬yy=zyxwxxz
18 17 13 nfimd ¬yy=zyxwxxzwx
19 elequ1 w=ywxyx
20 19 anbi1d w=ywxxzyxxz
21 20 exbidv w=yxwxxzxyxxz
22 21 19 imbi12d w=yxwxxzwxxyxxzyx
23 22 a1i ¬yy=zw=yxwxxzwxxyxxzyx
24 11 18 23 cbvald ¬yy=zwxwxxzwxyxyxxzyx
25 24 exbidv ¬yy=zxwxwxxzwxxyxyxxzyx
26 10 25 mpbii ¬yy=zxyxyxxzyx
27 9 26 pm2.61i xyxyxxzyx