Metamath Proof Explorer


Theorem axsepgfromrep

Description: A more general version axsepg of the axiom scheme of separation ax-sep derived from the axiom scheme of replacement ax-rep (and first-order logic). The extra generality consists in the absence of a disjoint variable condition on z , ph (that is, variable z may occur in formula ph ). See linked statements for more information. (Contributed by NM, 11-Sep-2006) Remove dependencies on ax-9 to ax-13 . (Revised by SN, 25-Sep-2023) Use ax-sep instead (or axsepg if the extra generality is needed). (New usage is discouraged.)

Ref Expression
Assertion axsepgfromrep yxxyxzφ

Proof

Step Hyp Ref Expression
1 axrep6 w*xw=xφyxxywzw=xφ
2 euequ ∃!xx=w
3 2 eumoi *xx=w
4 equcomi w=xx=w
5 4 adantr w=xφx=w
6 5 moimi *xx=w*xw=xφ
7 3 6 ax-mp *xw=xφ
8 1 7 mpg yxxywzw=xφ
9 df-rex wzw=xφwwzw=xφ
10 an12 w=xwzφwzw=xφ
11 10 exbii ww=xwzφwwzw=xφ
12 elequ1 w=xwzxz
13 12 anbi1d w=xwzφxzφ
14 13 equsexvw ww=xwzφxzφ
15 9 11 14 3bitr2i wzw=xφxzφ
16 15 bibi2i xywzw=xφxyxzφ
17 16 albii xxywzw=xφxxyxzφ
18 17 exbii yxxywzw=xφyxxyxzφ
19 8 18 mpbi yxxyxzφ