Metamath Proof Explorer


Theorem ballotlem1

Description: The size of the universe is a binomial coefficient. (Contributed by Thierry Arnoux, 23-Nov-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
Assertion ballotlem1 O=(M+NM)

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 3 fveq2i O=c𝒫1M+N|c=M
5 fzfi 1M+NFin
6 1 nnzi M
7 hashbc 1M+NFinM(1M+NM)=c𝒫1M+N|c=M
8 5 6 7 mp2an (1M+NM)=c𝒫1M+N|c=M
9 1 2 pm3.2i MN
10 nnaddcl MNM+N
11 nnnn0 M+NM+N0
12 9 10 11 mp2b M+N0
13 hashfz1 M+N01M+N=M+N
14 12 13 ax-mp 1M+N=M+N
15 14 oveq1i (1M+NM)=(M+NM)
16 4 8 15 3eqtr2i O=(M+NM)