Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
3
|
fveq2i |
|- ( # ` O ) = ( # ` { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } ) |
5 |
|
fzfi |
|- ( 1 ... ( M + N ) ) e. Fin |
6 |
1
|
nnzi |
|- M e. ZZ |
7 |
|
hashbc |
|- ( ( ( 1 ... ( M + N ) ) e. Fin /\ M e. ZZ ) -> ( ( # ` ( 1 ... ( M + N ) ) ) _C M ) = ( # ` { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } ) ) |
8 |
5 6 7
|
mp2an |
|- ( ( # ` ( 1 ... ( M + N ) ) ) _C M ) = ( # ` { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } ) |
9 |
1 2
|
pm3.2i |
|- ( M e. NN /\ N e. NN ) |
10 |
|
nnaddcl |
|- ( ( M e. NN /\ N e. NN ) -> ( M + N ) e. NN ) |
11 |
|
nnnn0 |
|- ( ( M + N ) e. NN -> ( M + N ) e. NN0 ) |
12 |
9 10 11
|
mp2b |
|- ( M + N ) e. NN0 |
13 |
|
hashfz1 |
|- ( ( M + N ) e. NN0 -> ( # ` ( 1 ... ( M + N ) ) ) = ( M + N ) ) |
14 |
12 13
|
ax-mp |
|- ( # ` ( 1 ... ( M + N ) ) ) = ( M + N ) |
15 |
14
|
oveq1i |
|- ( ( # ` ( 1 ... ( M + N ) ) ) _C M ) = ( ( M + N ) _C M ) |
16 |
4 8 15
|
3eqtr2i |
|- ( # ` O ) = ( ( M + N ) _C M ) |