Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
fveqeq2 |
|- ( d = C -> ( ( # ` d ) = M <-> ( # ` C ) = M ) ) |
5 |
|
fveqeq2 |
|- ( c = d -> ( ( # ` c ) = M <-> ( # ` d ) = M ) ) |
6 |
5
|
cbvrabv |
|- { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } = { d e. ~P ( 1 ... ( M + N ) ) | ( # ` d ) = M } |
7 |
3 6
|
eqtri |
|- O = { d e. ~P ( 1 ... ( M + N ) ) | ( # ` d ) = M } |
8 |
4 7
|
elrab2 |
|- ( C e. O <-> ( C e. ~P ( 1 ... ( M + N ) ) /\ ( # ` C ) = M ) ) |
9 |
|
ovex |
|- ( 1 ... ( M + N ) ) e. _V |
10 |
9
|
elpw2 |
|- ( C e. ~P ( 1 ... ( M + N ) ) <-> C C_ ( 1 ... ( M + N ) ) ) |
11 |
10
|
anbi1i |
|- ( ( C e. ~P ( 1 ... ( M + N ) ) /\ ( # ` C ) = M ) <-> ( C C_ ( 1 ... ( M + N ) ) /\ ( # ` C ) = M ) ) |
12 |
8 11
|
bitri |
|- ( C e. O <-> ( C C_ ( 1 ... ( M + N ) ) /\ ( # ` C ) = M ) ) |