Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
fveqeq2 |
⊢ ( 𝑑 = 𝐶 → ( ( ♯ ‘ 𝑑 ) = 𝑀 ↔ ( ♯ ‘ 𝐶 ) = 𝑀 ) ) |
5 |
|
fveqeq2 |
⊢ ( 𝑐 = 𝑑 → ( ( ♯ ‘ 𝑐 ) = 𝑀 ↔ ( ♯ ‘ 𝑑 ) = 𝑀 ) ) |
6 |
5
|
cbvrabv |
⊢ { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } = { 𝑑 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑑 ) = 𝑀 } |
7 |
3 6
|
eqtri |
⊢ 𝑂 = { 𝑑 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑑 ) = 𝑀 } |
8 |
4 7
|
elrab2 |
⊢ ( 𝐶 ∈ 𝑂 ↔ ( 𝐶 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ♯ ‘ 𝐶 ) = 𝑀 ) ) |
9 |
|
ovex |
⊢ ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ V |
10 |
9
|
elpw2 |
⊢ ( 𝐶 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ↔ 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
11 |
10
|
anbi1i |
⊢ ( ( 𝐶 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ♯ ‘ 𝐶 ) = 𝑀 ) ↔ ( 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ♯ ‘ 𝐶 ) = 𝑀 ) ) |
12 |
8 11
|
bitri |
⊢ ( 𝐶 ∈ 𝑂 ↔ ( 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ♯ ‘ 𝐶 ) = 𝑀 ) ) |