Metamath Proof Explorer


Theorem ballotlemelo

Description: Elementhood in O . (Contributed by Thierry Arnoux, 17-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
Assertion ballotlemelo COC1M+NC=M

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 fveqeq2 d=Cd=MC=M
5 fveqeq2 c=dc=Md=M
6 5 cbvrabv c𝒫1M+N|c=M=d𝒫1M+N|d=M
7 3 6 eqtri O=d𝒫1M+N|d=M
8 4 7 elrab2 COC𝒫1M+NC=M
9 ovex 1M+NV
10 9 elpw2 C𝒫1M+NC1M+N
11 10 anbi1i C𝒫1M+NC=MC1M+NC=M
12 8 11 bitri COC1M+NC=M