Metamath Proof Explorer


Theorem ballotlemfval0

Description: ( FC ) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
Assertion ballotlemfval0 C O F C 0 = 0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 id C O C O
7 0zd C O 0
8 1 2 3 4 5 6 7 ballotlemfval C O F C 0 = 1 0 C 1 0 C
9 fz10 1 0 =
10 9 ineq1i 1 0 C = C
11 incom C = C
12 in0 C =
13 10 11 12 3eqtr2i 1 0 C =
14 13 fveq2i 1 0 C =
15 hash0 = 0
16 14 15 eqtri 1 0 C = 0
17 9 difeq1i 1 0 C = C
18 0dif C =
19 17 18 eqtri 1 0 C =
20 19 fveq2i 1 0 C =
21 20 15 eqtri 1 0 C = 0
22 16 21 oveq12i 1 0 C 1 0 C = 0 0
23 0m0e0 0 0 = 0
24 22 23 eqtri 1 0 C 1 0 C = 0
25 8 24 eqtrdi C O F C 0 = 0