Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Probability
Bertrand's Ballot Problem
ballotleme
Next ⟩
ballotlemodife
Metamath Proof Explorer
Ascii
Unicode
Theorem
ballotleme
Description:
Elements of
E
.
(Contributed by
Thierry Arnoux
, 14-Dec-2016)
Ref
Expression
Hypotheses
ballotth.m
⊢
M
∈
ℕ
ballotth.n
⊢
N
∈
ℕ
ballotth.o
⊢
O
=
c
∈
𝒫
1
…
M
+
N
|
c
=
M
ballotth.p
⊢
P
=
x
∈
𝒫
O
⟼
x
O
ballotth.f
⊢
F
=
c
∈
O
⟼
i
∈
ℤ
⟼
1
…
i
∩
c
−
1
…
i
∖
c
ballotth.e
⊢
E
=
c
∈
O
|
∀
i
∈
1
…
M
+
N
0
<
F
⁡
c
⁡
i
Assertion
ballotleme
⊢
C
∈
E
↔
C
∈
O
∧
∀
i
∈
1
…
M
+
N
0
<
F
⁡
C
⁡
i
Proof
Step
Hyp
Ref
Expression
1
ballotth.m
⊢
M
∈
ℕ
2
ballotth.n
⊢
N
∈
ℕ
3
ballotth.o
⊢
O
=
c
∈
𝒫
1
…
M
+
N
|
c
=
M
4
ballotth.p
⊢
P
=
x
∈
𝒫
O
⟼
x
O
5
ballotth.f
⊢
F
=
c
∈
O
⟼
i
∈
ℤ
⟼
1
…
i
∩
c
−
1
…
i
∖
c
6
ballotth.e
⊢
E
=
c
∈
O
|
∀
i
∈
1
…
M
+
N
0
<
F
⁡
c
⁡
i
7
fveq2
⊢
d
=
C
→
F
⁡
d
=
F
⁡
C
8
7
fveq1d
⊢
d
=
C
→
F
⁡
d
⁡
i
=
F
⁡
C
⁡
i
9
8
breq2d
⊢
d
=
C
→
0
<
F
⁡
d
⁡
i
↔
0
<
F
⁡
C
⁡
i
10
9
ralbidv
⊢
d
=
C
→
∀
i
∈
1
…
M
+
N
0
<
F
⁡
d
⁡
i
↔
∀
i
∈
1
…
M
+
N
0
<
F
⁡
C
⁡
i
11
fveq2
⊢
c
=
d
→
F
⁡
c
=
F
⁡
d
12
11
fveq1d
⊢
c
=
d
→
F
⁡
c
⁡
i
=
F
⁡
d
⁡
i
13
12
breq2d
⊢
c
=
d
→
0
<
F
⁡
c
⁡
i
↔
0
<
F
⁡
d
⁡
i
14
13
ralbidv
⊢
c
=
d
→
∀
i
∈
1
…
M
+
N
0
<
F
⁡
c
⁡
i
↔
∀
i
∈
1
…
M
+
N
0
<
F
⁡
d
⁡
i
15
14
cbvrabv
⊢
c
∈
O
|
∀
i
∈
1
…
M
+
N
0
<
F
⁡
c
⁡
i
=
d
∈
O
|
∀
i
∈
1
…
M
+
N
0
<
F
⁡
d
⁡
i
16
6
15
eqtri
⊢
E
=
d
∈
O
|
∀
i
∈
1
…
M
+
N
0
<
F
⁡
d
⁡
i
17
10
16
elrab2
⊢
C
∈
E
↔
C
∈
O
∧
∀
i
∈
1
…
M
+
N
0
<
F
⁡
C
⁡
i