Metamath Proof Explorer


Theorem ballotleme

Description: Elements of E . (Contributed by Thierry Arnoux, 14-Dec-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
Assertion ballotleme CECOi1M+N0<FCi

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 fveq2 d=CFd=FC
8 7 fveq1d d=CFdi=FCi
9 8 breq2d d=C0<Fdi0<FCi
10 9 ralbidv d=Ci1M+N0<Fdii1M+N0<FCi
11 fveq2 c=dFc=Fd
12 11 fveq1d c=dFci=Fdi
13 12 breq2d c=d0<Fci0<Fdi
14 13 ralbidv c=di1M+N0<Fcii1M+N0<Fdi
15 14 cbvrabv cO|i1M+N0<Fci=dO|i1M+N0<Fdi
16 6 15 eqtri E=dO|i1M+N0<Fdi
17 10 16 elrab2 CECOi1M+N0<FCi