Metamath Proof Explorer


Theorem ballotleme

Description: Elements of E . (Contributed by Thierry Arnoux, 14-Dec-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
Assertion ballotleme C E C O i 1 M + N 0 < F C i

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 fveq2 d = C F d = F C
8 7 fveq1d d = C F d i = F C i
9 8 breq2d d = C 0 < F d i 0 < F C i
10 9 ralbidv d = C i 1 M + N 0 < F d i i 1 M + N 0 < F C i
11 fveq2 c = d F c = F d
12 11 fveq1d c = d F c i = F d i
13 12 breq2d c = d 0 < F c i 0 < F d i
14 13 ralbidv c = d i 1 M + N 0 < F c i i 1 M + N 0 < F d i
15 14 cbvrabv c O | i 1 M + N 0 < F c i = d O | i 1 M + N 0 < F d i
16 6 15 eqtri E = d O | i 1 M + N 0 < F d i
17 10 16 elrab2 C E C O i 1 M + N 0 < F C i