Metamath Proof Explorer


Theorem basendxltplendx

Description: The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024)

Ref Expression
Assertion basendxltplendx Basendx<ndx

Proof

Step Hyp Ref Expression
1 1lt10 1<10
2 basendx Basendx=1
3 plendx ndx=10
4 1 2 3 3brtr4i Basendx<ndx