Metamath Proof Explorer


Theorem bastop

Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006)

Ref Expression
Assertion bastop BTopBasesBToptopGenB=B

Proof

Step Hyp Ref Expression
1 tgtop BToptopGenB=B
2 tgcl BTopBasestopGenBTop
3 eleq1 topGenB=BtopGenBTopBTop
4 2 3 syl5ibcom BTopBasestopGenB=BBTop
5 1 4 impbid2 BTopBasesBToptopGenB=B