Metamath Proof Explorer


Theorem bdophdi

Description: The difference between two bounded linear operators is bounded. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nmoptri.1 SBndLinOp
nmoptri.2 TBndLinOp
Assertion bdophdi S-opTBndLinOp

Proof

Step Hyp Ref Expression
1 nmoptri.1 SBndLinOp
2 nmoptri.2 TBndLinOp
3 bdopf SBndLinOpS:
4 1 3 ax-mp S:
5 bdopf TBndLinOpT:
6 2 5 ax-mp T:
7 4 6 honegsubi S+op-1·opT=S-opT
8 neg1cn 1
9 2 bdophmi 1-1·opTBndLinOp
10 8 9 ax-mp -1·opTBndLinOp
11 1 10 bdophsi S+op-1·opTBndLinOp
12 7 11 eqeltrri S-opTBndLinOp