Metamath Proof Explorer


Theorem bdophsi

Description: The sum of two bounded linear operators is a bounded linear operator. (Contributed by NM, 9-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nmoptri.1 SBndLinOp
nmoptri.2 TBndLinOp
Assertion bdophsi S+opTBndLinOp

Proof

Step Hyp Ref Expression
1 nmoptri.1 SBndLinOp
2 nmoptri.2 TBndLinOp
3 bdopln SBndLinOpSLinOp
4 1 3 ax-mp SLinOp
5 bdopln TBndLinOpTLinOp
6 2 5 ax-mp TLinOp
7 4 6 lnophsi S+opTLinOp
8 bdopf SBndLinOpS:
9 1 8 ax-mp S:
10 bdopf TBndLinOpT:
11 2 10 ax-mp T:
12 9 11 hoaddcli S+opT:
13 nmopxr S+opT:normopS+opT*
14 12 13 ax-mp normopS+opT*
15 nmopre SBndLinOpnormopS
16 1 15 ax-mp normopS
17 nmopre TBndLinOpnormopT
18 2 17 ax-mp normopT
19 16 18 readdcli normopS+normopT
20 nmopgtmnf S+opT:−∞<normopS+opT
21 12 20 ax-mp −∞<normopS+opT
22 1 2 nmoptrii normopS+opTnormopS+normopT
23 xrre normopS+opT*normopS+normopT−∞<normopS+opTnormopS+opTnormopS+normopTnormopS+opT
24 14 19 21 22 23 mp4an normopS+opT
25 elbdop2 S+opTBndLinOpS+opTLinOpnormopS+opT
26 7 24 25 mpbir2an S+opTBndLinOp