Metamath Proof Explorer


Theorem nmoptrii

Description: Triangle inequality for the norms of bounded linear operators. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nmoptri.1 SBndLinOp
nmoptri.2 TBndLinOp
Assertion nmoptrii normopS+opTnormopS+normopT

Proof

Step Hyp Ref Expression
1 nmoptri.1 SBndLinOp
2 nmoptri.2 TBndLinOp
3 bdopf SBndLinOpS:
4 1 3 ax-mp S:
5 bdopf TBndLinOpT:
6 2 5 ax-mp T:
7 4 6 hoaddcli S+opT:
8 nmopre SBndLinOpnormopS
9 1 8 ax-mp normopS
10 nmopre TBndLinOpnormopT
11 2 10 ax-mp normopT
12 9 11 readdcli normopS+normopT
13 12 rexri normopS+normopT*
14 nmopub S+opT:normopS+normopT*normopS+opTnormopS+normopTxnormx1normS+opTxnormopS+normopT
15 7 13 14 mp2an normopS+opTnormopS+normopTxnormx1normS+opTxnormopS+normopT
16 4 6 hoscli xS+opTx
17 normcl S+opTxnormS+opTx
18 16 17 syl xnormS+opTx
19 18 adantr xnormx1normS+opTx
20 4 ffvelcdmi xSx
21 normcl SxnormSx
22 20 21 syl xnormSx
23 6 ffvelcdmi xTx
24 normcl TxnormTx
25 23 24 syl xnormTx
26 22 25 readdcld xnormSx+normTx
27 26 adantr xnormx1normSx+normTx
28 12 a1i xnormx1normopS+normopT
29 hosval S:T:xS+opTx=Sx+Tx
30 4 6 29 mp3an12 xS+opTx=Sx+Tx
31 30 fveq2d xnormS+opTx=normSx+Tx
32 norm-ii SxTxnormSx+TxnormSx+normTx
33 20 23 32 syl2anc xnormSx+TxnormSx+normTx
34 31 33 eqbrtrd xnormS+opTxnormSx+normTx
35 34 adantr xnormx1normS+opTxnormSx+normTx
36 nmoplb S:xnormx1normSxnormopS
37 4 36 mp3an1 xnormx1normSxnormopS
38 nmoplb T:xnormx1normTxnormopT
39 6 38 mp3an1 xnormx1normTxnormopT
40 le2add normSxnormTxnormopSnormopTnormSxnormopSnormTxnormopTnormSx+normTxnormopS+normopT
41 9 11 40 mpanr12 normSxnormTxnormSxnormopSnormTxnormopTnormSx+normTxnormopS+normopT
42 22 25 41 syl2anc xnormSxnormopSnormTxnormopTnormSx+normTxnormopS+normopT
43 42 adantr xnormx1normSxnormopSnormTxnormopTnormSx+normTxnormopS+normopT
44 37 39 43 mp2and xnormx1normSx+normTxnormopS+normopT
45 19 27 28 35 44 letrd xnormx1normS+opTxnormopS+normopT
46 45 ex xnormx1normS+opTxnormopS+normopT
47 15 46 mprgbir normopS+opTnormopS+normopT