Metamath Proof Explorer


Theorem biadaniALT

Description: Alternate proof of biadani not using biadan . (Contributed by BJ, 4-Mar-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis biadani.1 φψ
Assertion biadaniALT ψφχφψχ

Proof

Step Hyp Ref Expression
1 biadani.1 φψ
2 pm5.32 ψφχψφψχ
3 1 pm4.71ri φψφ
4 3 bibi1i φψχψφψχ
5 2 4 bitr4i ψφχφψχ