Metamath Proof Explorer


Theorem bicom

Description: Commutative law for the biconditional. Theorem *4.21 of WhiteheadRussell p. 117. (Contributed by NM, 11-May-1993)

Ref Expression
Assertion bicom φψψφ

Proof

Step Hyp Ref Expression
1 bicom1 φψψφ
2 bicom1 ψφφψ
3 1 2 impbii φψψφ