Metamath Proof Explorer


Theorem biimpac

Description: Importation inference from a logical equivalence. (Contributed by NM, 3-May-1994)

Ref Expression
Hypothesis biimpa.1 φψχ
Assertion biimpac ψφχ

Proof

Step Hyp Ref Expression
1 biimpa.1 φψχ
2 1 biimpcd ψφχ
3 2 imp ψφχ