Metamath Proof Explorer


Theorem biimpor

Description: A rewriting rule for biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Assertion biimpor φψχ¬φψχ

Proof

Step Hyp Ref Expression
1 imor φψχ¬φψχ
2 notbinot2 ¬φψ¬φψ
3 2 orbi1i ¬φψχ¬φψχ
4 1 3 bitri φψχ¬φψχ