Metamath Proof Explorer


Theorem bitrdi

Description: A syllogism inference from two biconditionals. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypotheses bitrdi.1 φψχ
bitrdi.2 χθ
Assertion bitrdi φψθ

Proof

Step Hyp Ref Expression
1 bitrdi.1 φψχ
2 bitrdi.2 χθ
3 2 a1i φχθ
4 1 3 bitrd φψθ