Metamath Proof Explorer


Theorem bj-1upln0

Description: A monuple is nonempty. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-1upln0 A

Proof

Step Hyp Ref Expression
1 df-bj-1upl A = × tag A
2 0nep0
3 2 necomi
4 bj-tagn0 tag A
5 xpnz tag A × tag A
6 5 biimpi tag A × tag A
7 3 4 6 mp2an × tag A
8 1 7 eqnetri A