Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
Adding ax-4
bj-3exbi
Next ⟩
bj-sylgt2
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-3exbi
Description:
Closed form of
3exbii
.
(Contributed by
BJ
, 6-May-2019)
Ref
Expression
Assertion
bj-3exbi
⊢
∀
x
∀
y
∀
z
φ
↔
ψ
→
∃
x
∃
y
∃
z
φ
↔
∃
x
∃
y
∃
z
ψ
Proof
Step
Hyp
Ref
Expression
1
exbi
⊢
∀
z
φ
↔
ψ
→
∃
z
φ
↔
∃
z
ψ
2
1
2alimi
⊢
∀
x
∀
y
∀
z
φ
↔
ψ
→
∀
x
∀
y
∃
z
φ
↔
∃
z
ψ
3
bj-2exbi
⊢
∀
x
∀
y
∃
z
φ
↔
∃
z
ψ
→
∃
x
∃
y
∃
z
φ
↔
∃
x
∃
y
∃
z
ψ
4
2
3
syl
⊢
∀
x
∀
y
∀
z
φ
↔
ψ
→
∃
x
∃
y
∃
z
φ
↔
∃
x
∃
y
∃
z
ψ