Description: Closed form of 3exbii . (Contributed by BJ, 6-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-3exbi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi | ⊢ ( ∀ 𝑧 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑧 𝜑 ↔ ∃ 𝑧 𝜓 ) ) | |
2 | 1 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝜑 ↔ 𝜓 ) → ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑧 𝜑 ↔ ∃ 𝑧 𝜓 ) ) |
3 | bj-2exbi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑧 𝜑 ↔ ∃ 𝑧 𝜓 ) → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜓 ) ) | |
4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜓 ) ) |