Metamath Proof Explorer


Theorem bj-3exbi

Description: Closed form of 3exbii . (Contributed by BJ, 6-May-2019)

Ref Expression
Assertion bj-3exbi ( ∀ 𝑥𝑦𝑧 ( 𝜑𝜓 ) → ( ∃ 𝑥𝑦𝑧 𝜑 ↔ ∃ 𝑥𝑦𝑧 𝜓 ) )

Proof

Step Hyp Ref Expression
1 exbi ( ∀ 𝑧 ( 𝜑𝜓 ) → ( ∃ 𝑧 𝜑 ↔ ∃ 𝑧 𝜓 ) )
2 1 2alimi ( ∀ 𝑥𝑦𝑧 ( 𝜑𝜓 ) → ∀ 𝑥𝑦 ( ∃ 𝑧 𝜑 ↔ ∃ 𝑧 𝜓 ) )
3 bj-2exbi ( ∀ 𝑥𝑦 ( ∃ 𝑧 𝜑 ↔ ∃ 𝑧 𝜓 ) → ( ∃ 𝑥𝑦𝑧 𝜑 ↔ ∃ 𝑥𝑦𝑧 𝜓 ) )
4 2 3 syl ( ∀ 𝑥𝑦𝑧 ( 𝜑𝜓 ) → ( ∃ 𝑥𝑦𝑧 𝜑 ↔ ∃ 𝑥𝑦𝑧 𝜓 ) )