Description: Closed form of 2exbii . (Contributed by BJ, 6-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-2exbi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi | ⊢ ( ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜓 ) ) | |
| 2 | 1 | alexbii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |