Metamath Proof Explorer


Theorem bj-abex

Description: Two ways of stating that the extension of a formula is a set. (Contributed by BJ, 18-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-abex x | φ V y x x y φ

Proof

Step Hyp Ref Expression
1 isset x | φ V y y = x | φ
2 eqabb y = x | φ x x y φ
3 2 exbii y y = x | φ y x x y φ
4 1 3 bitri x | φ V y x x y φ