Description: Two ways of stating that the extension of a formula is a set. (Contributed by BJ, 18-Jan-2025) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-abex | ⊢ ( { 𝑥 ∣ 𝜑 } ∈ V ↔ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset | ⊢ ( { 𝑥 ∣ 𝜑 } ∈ V ↔ ∃ 𝑦 𝑦 = { 𝑥 ∣ 𝜑 } ) | |
2 | eqabb | ⊢ ( 𝑦 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) | |
3 | 2 | exbii | ⊢ ( ∃ 𝑦 𝑦 = { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) |
4 | 1 3 | bitri | ⊢ ( { 𝑥 ∣ 𝜑 } ∈ V ↔ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) |