Metamath Proof Explorer


Theorem bj-abex

Description: Two ways of stating that the extension of a formula is a set. (Contributed by BJ, 18-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-abex ( { 𝑥𝜑 } ∈ V ↔ ∃ 𝑦𝑥 ( 𝑥𝑦𝜑 ) )

Proof

Step Hyp Ref Expression
1 isset ( { 𝑥𝜑 } ∈ V ↔ ∃ 𝑦 𝑦 = { 𝑥𝜑 } )
2 eqabb ( 𝑦 = { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥𝑦𝜑 ) )
3 2 exbii ( ∃ 𝑦 𝑦 = { 𝑥𝜑 } ↔ ∃ 𝑦𝑥 ( 𝑥𝑦𝜑 ) )
4 1 3 bitri ( { 𝑥𝜑 } ∈ V ↔ ∃ 𝑦𝑥 ( 𝑥𝑦𝜑 ) )