Metamath Proof Explorer


Theorem bj-abex

Description: Two ways of stating that the extension of a formula is a set. (Contributed by BJ, 18-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-abex
|- ( { x | ph } e. _V <-> E. y A. x ( x e. y <-> ph ) )

Proof

Step Hyp Ref Expression
1 isset
 |-  ( { x | ph } e. _V <-> E. y y = { x | ph } )
2 eqabb
 |-  ( y = { x | ph } <-> A. x ( x e. y <-> ph ) )
3 2 exbii
 |-  ( E. y y = { x | ph } <-> E. y A. x ( x e. y <-> ph ) )
4 1 3 bitri
 |-  ( { x | ph } e. _V <-> E. y A. x ( x e. y <-> ph ) )