Description: Two ways of stating that the extension of a formula is a set. (Contributed by BJ, 18-Jan-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-abex | |- ( { x | ph } e. _V <-> E. y A. x ( x e. y <-> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset | |- ( { x | ph } e. _V <-> E. y y = { x | ph } ) |
|
| 2 | eqabb | |- ( y = { x | ph } <-> A. x ( x e. y <-> ph ) ) |
|
| 3 | 2 | exbii | |- ( E. y y = { x | ph } <-> E. y A. x ( x e. y <-> ph ) ) |
| 4 | 1 3 | bitri | |- ( { x | ph } e. _V <-> E. y A. x ( x e. y <-> ph ) ) |