Metamath Proof Explorer


Theorem bj-ax12ssb

Description: Axiom bj-ax12 expressed using substitution. (Contributed by BJ, 26-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ax12ssb txφtxφ

Proof

Step Hyp Ref Expression
1 bj-ax12 xx=tφxx=tφ
2 sb6 txφxx=tφ
3 2 imbi2i φtxφφxx=tφ
4 3 imbi2i x=tφtxφx=tφxx=tφ
5 4 albii xx=tφtxφxx=tφxx=tφ
6 1 5 mpbir xx=tφtxφ
7 sb6 txφtxφxx=tφtxφ
8 6 7 mpbir txφtxφ