Metamath Proof Explorer


Theorem bj-bibibi

Description: A property of the biconditional. (Contributed by BJ, 26-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-bibibi φ ψ φ ψ

Proof

Step Hyp Ref Expression
1 pm5.501 φ ψ φ ψ
2 bianir ψ φ ψ φ
3 2 ex ψ φ ψ φ
4 bibif ¬ ψ φ ψ ¬ φ
5 4 con2bid ¬ ψ φ ¬ φ ψ
6 5 biimprd ¬ ψ ¬ φ ψ φ
7 3 6 bija ψ φ ψ φ
8 1 7 impbii φ ψ φ ψ