Metamath Proof Explorer


Theorem bj-bibibi

Description: A property of the biconditional. (Contributed by BJ, 26-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-bibibi
|- ( ph <-> ( ps <-> ( ph <-> ps ) ) )

Proof

Step Hyp Ref Expression
1 pm5.501
 |-  ( ph -> ( ps <-> ( ph <-> ps ) ) )
2 bianir
 |-  ( ( ps /\ ( ph <-> ps ) ) -> ph )
3 2 ex
 |-  ( ps -> ( ( ph <-> ps ) -> ph ) )
4 bibif
 |-  ( -. ps -> ( ( ph <-> ps ) <-> -. ph ) )
5 4 con2bid
 |-  ( -. ps -> ( ph <-> -. ( ph <-> ps ) ) )
6 5 biimprd
 |-  ( -. ps -> ( -. ( ph <-> ps ) -> ph ) )
7 3 6 bija
 |-  ( ( ps <-> ( ph <-> ps ) ) -> ph )
8 1 7 impbii
 |-  ( ph <-> ( ps <-> ( ph <-> ps ) ) )