Description: A property of the biconditional. (Contributed by BJ, 26-Oct-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-bibibi | |- ( ph <-> ( ps <-> ( ph <-> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.501 | |- ( ph -> ( ps <-> ( ph <-> ps ) ) ) |
|
| 2 | bianir | |- ( ( ps /\ ( ph <-> ps ) ) -> ph ) |
|
| 3 | 2 | ex | |- ( ps -> ( ( ph <-> ps ) -> ph ) ) |
| 4 | bibif | |- ( -. ps -> ( ( ph <-> ps ) <-> -. ph ) ) |
|
| 5 | 4 | con2bid | |- ( -. ps -> ( ph <-> -. ( ph <-> ps ) ) ) |
| 6 | 5 | biimprd | |- ( -. ps -> ( -. ( ph <-> ps ) -> ph ) ) |
| 7 | 3 6 | bija | |- ( ( ps <-> ( ph <-> ps ) ) -> ph ) |
| 8 | 1 7 | impbii | |- ( ph <-> ( ps <-> ( ph <-> ps ) ) ) |