Metamath Proof Explorer


Theorem bj-bibibi

Description: A property of the biconditional. (Contributed by BJ, 26-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-bibibi ( 𝜑 ↔ ( 𝜓 ↔ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 pm5.501 ( 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
2 bianir ( ( 𝜓 ∧ ( 𝜑𝜓 ) ) → 𝜑 )
3 2 ex ( 𝜓 → ( ( 𝜑𝜓 ) → 𝜑 ) )
4 bibif ( ¬ 𝜓 → ( ( 𝜑𝜓 ) ↔ ¬ 𝜑 ) )
5 4 con2bid ( ¬ 𝜓 → ( 𝜑 ↔ ¬ ( 𝜑𝜓 ) ) )
6 5 biimprd ( ¬ 𝜓 → ( ¬ ( 𝜑𝜓 ) → 𝜑 ) )
7 3 6 bija ( ( 𝜓 ↔ ( 𝜑𝜓 ) ) → 𝜑 )
8 1 7 impbii ( 𝜑 ↔ ( 𝜓 ↔ ( 𝜑𝜓 ) ) )