Description: A property of the biconditional. (Contributed by BJ, 26-Oct-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-bibibi | ⊢ ( 𝜑 ↔ ( 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.501 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) | |
2 | bianir | ⊢ ( ( 𝜓 ∧ ( 𝜑 ↔ 𝜓 ) ) → 𝜑 ) | |
3 | 2 | ex | ⊢ ( 𝜓 → ( ( 𝜑 ↔ 𝜓 ) → 𝜑 ) ) |
4 | bibif | ⊢ ( ¬ 𝜓 → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ 𝜑 ) ) | |
5 | 4 | con2bid | ⊢ ( ¬ 𝜓 → ( 𝜑 ↔ ¬ ( 𝜑 ↔ 𝜓 ) ) ) |
6 | 5 | biimprd | ⊢ ( ¬ 𝜓 → ( ¬ ( 𝜑 ↔ 𝜓 ) → 𝜑 ) ) |
7 | 3 6 | bija | ⊢ ( ( 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) → 𝜑 ) |
8 | 1 7 | impbii | ⊢ ( 𝜑 ↔ ( 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |