Metamath Proof Explorer


Theorem bj-bm1.3ii

Description: The extension of a predicate ( ph ( z ) ) is included in a set ( x ) if and only if it is a set ( y ). Sufficiency is obvious, and necessity is the content of the axiom of separation ax-sep . Similar to Theorem 1.3(ii) of BellMachover p. 463. (Contributed by NM, 21-Jun-1993) Generalized to a closed form biconditional with existential quantifications using two different setvars x , y (which need not be disjoint). (Revised by BJ, 8-Aug-2022)

TODO: move in place of bm1.3ii . Relabel ("sepbi"?).

Ref Expression
Assertion bj-bm1.3ii x z φ z x y z z y φ

Proof

Step Hyp Ref Expression
1 elequ2 x = t z x z t
2 1 imbi2d x = t φ z x φ z t
3 2 albidv x = t z φ z x z φ z t
4 3 cbvexvw x z φ z x t z φ z t
5 ax-sep y z z y z t φ
6 19.42v y z φ z t z z y z t φ z φ z t y z z y z t φ
7 bimsc1 φ z t z y z t φ z y φ
8 7 alanimi z φ z t z z y z t φ z z y φ
9 8 eximi y z φ z t z z y z t φ y z z y φ
10 6 9 sylbir z φ z t y z z y z t φ y z z y φ
11 5 10 mpan2 z φ z t y z z y φ
12 11 exlimiv t z φ z t y z z y φ
13 elequ2 y = t z y z t
14 13 bibi1d y = t z y φ z t φ
15 14 albidv y = t z z y φ z z t φ
16 15 cbvexvw y z z y φ t z z t φ
17 biimpr z t φ φ z t
18 17 alimi z z t φ z φ z t
19 18 eximi t z z t φ t z φ z t
20 16 19 sylbi y z z y φ t z φ z t
21 12 20 impbii t z φ z t y z z y φ
22 4 21 bitri x z φ z x y z z y φ