Metamath Proof Explorer


Theorem bj-bm1.3ii

Description: The extension of a predicate ( ph ( z ) ) is included in a set ( x ) if and only if it is a set ( y ). Sufficiency is obvious, and necessity is the content of the axiom of separation ax-sep . Similar to Theorem 1.3(ii) of BellMachover p. 463. (Contributed by NM, 21-Jun-1993) Generalized to a closed form biconditional with existential quantifications using two different setvars x , y (which need not be disjoint). (Revised by BJ, 8-Aug-2022)

TODO: move in place of bm1.3ii . Relabel ("sepbi"?).

Ref Expression
Assertion bj-bm1.3ii xzφzxyzzyφ

Proof

Step Hyp Ref Expression
1 elequ2 x=tzxzt
2 1 imbi2d x=tφzxφzt
3 2 albidv x=tzφzxzφzt
4 3 cbvexvw xzφzxtzφzt
5 ax-sep yzzyztφ
6 19.42v yzφztzzyztφzφztyzzyztφ
7 bimsc1 φztzyztφzyφ
8 7 alanimi zφztzzyztφzzyφ
9 8 eximi yzφztzzyztφyzzyφ
10 6 9 sylbir zφztyzzyztφyzzyφ
11 5 10 mpan2 zφztyzzyφ
12 11 exlimiv tzφztyzzyφ
13 elequ2 y=tzyzt
14 13 bibi1d y=tzyφztφ
15 14 albidv y=tzzyφzztφ
16 15 cbvexvw yzzyφtzztφ
17 biimpr ztφφzt
18 17 alimi zztφzφzt
19 18 eximi tzztφtzφzt
20 16 19 sylbi yzzyφtzφzt
21 12 20 impbii tzφztyzzyφ
22 4 21 bitri xzφzxyzzyφ