Metamath Proof Explorer


Theorem bj-bm1.3ii

Description: The extension of a predicate ( ph ( z ) ) is included in a set ( x ) if and only if it is a set ( y ). Sufficiency is obvious, and necessity is the content of the axiom of separation ax-sep . Similar to Theorem 1.3(ii) of BellMachover p. 463. (Contributed by NM, 21-Jun-1993) Generalized to a closed form biconditional with existential quantifications using two different setvars x , y (which need not be disjoint). (Revised by BJ, 8-Aug-2022)

TODO: move in place of bm1.3ii . Relabel ("sepbi"?).

Ref Expression
Assertion bj-bm1.3ii ( ∃ 𝑥𝑧 ( 𝜑𝑧𝑥 ) ↔ ∃ 𝑦𝑧 ( 𝑧𝑦𝜑 ) )

Proof

Step Hyp Ref Expression
1 elequ2 ( 𝑥 = 𝑡 → ( 𝑧𝑥𝑧𝑡 ) )
2 1 imbi2d ( 𝑥 = 𝑡 → ( ( 𝜑𝑧𝑥 ) ↔ ( 𝜑𝑧𝑡 ) ) )
3 2 albidv ( 𝑥 = 𝑡 → ( ∀ 𝑧 ( 𝜑𝑧𝑥 ) ↔ ∀ 𝑧 ( 𝜑𝑧𝑡 ) ) )
4 3 cbvexvw ( ∃ 𝑥𝑧 ( 𝜑𝑧𝑥 ) ↔ ∃ 𝑡𝑧 ( 𝜑𝑧𝑡 ) )
5 ax-sep 𝑦𝑧 ( 𝑧𝑦 ↔ ( 𝑧𝑡𝜑 ) )
6 19.42v ( ∃ 𝑦 ( ∀ 𝑧 ( 𝜑𝑧𝑡 ) ∧ ∀ 𝑧 ( 𝑧𝑦 ↔ ( 𝑧𝑡𝜑 ) ) ) ↔ ( ∀ 𝑧 ( 𝜑𝑧𝑡 ) ∧ ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ( 𝑧𝑡𝜑 ) ) ) )
7 bimsc1 ( ( ( 𝜑𝑧𝑡 ) ∧ ( 𝑧𝑦 ↔ ( 𝑧𝑡𝜑 ) ) ) → ( 𝑧𝑦𝜑 ) )
8 7 alanimi ( ( ∀ 𝑧 ( 𝜑𝑧𝑡 ) ∧ ∀ 𝑧 ( 𝑧𝑦 ↔ ( 𝑧𝑡𝜑 ) ) ) → ∀ 𝑧 ( 𝑧𝑦𝜑 ) )
9 8 eximi ( ∃ 𝑦 ( ∀ 𝑧 ( 𝜑𝑧𝑡 ) ∧ ∀ 𝑧 ( 𝑧𝑦 ↔ ( 𝑧𝑡𝜑 ) ) ) → ∃ 𝑦𝑧 ( 𝑧𝑦𝜑 ) )
10 6 9 sylbir ( ( ∀ 𝑧 ( 𝜑𝑧𝑡 ) ∧ ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ( 𝑧𝑡𝜑 ) ) ) → ∃ 𝑦𝑧 ( 𝑧𝑦𝜑 ) )
11 5 10 mpan2 ( ∀ 𝑧 ( 𝜑𝑧𝑡 ) → ∃ 𝑦𝑧 ( 𝑧𝑦𝜑 ) )
12 11 exlimiv ( ∃ 𝑡𝑧 ( 𝜑𝑧𝑡 ) → ∃ 𝑦𝑧 ( 𝑧𝑦𝜑 ) )
13 elequ2 ( 𝑦 = 𝑡 → ( 𝑧𝑦𝑧𝑡 ) )
14 13 bibi1d ( 𝑦 = 𝑡 → ( ( 𝑧𝑦𝜑 ) ↔ ( 𝑧𝑡𝜑 ) ) )
15 14 albidv ( 𝑦 = 𝑡 → ( ∀ 𝑧 ( 𝑧𝑦𝜑 ) ↔ ∀ 𝑧 ( 𝑧𝑡𝜑 ) ) )
16 15 cbvexvw ( ∃ 𝑦𝑧 ( 𝑧𝑦𝜑 ) ↔ ∃ 𝑡𝑧 ( 𝑧𝑡𝜑 ) )
17 biimpr ( ( 𝑧𝑡𝜑 ) → ( 𝜑𝑧𝑡 ) )
18 17 alimi ( ∀ 𝑧 ( 𝑧𝑡𝜑 ) → ∀ 𝑧 ( 𝜑𝑧𝑡 ) )
19 18 eximi ( ∃ 𝑡𝑧 ( 𝑧𝑡𝜑 ) → ∃ 𝑡𝑧 ( 𝜑𝑧𝑡 ) )
20 16 19 sylbi ( ∃ 𝑦𝑧 ( 𝑧𝑦𝜑 ) → ∃ 𝑡𝑧 ( 𝜑𝑧𝑡 ) )
21 12 20 impbii ( ∃ 𝑡𝑧 ( 𝜑𝑧𝑡 ) ↔ ∃ 𝑦𝑧 ( 𝑧𝑦𝜑 ) )
22 4 21 bitri ( ∃ 𝑥𝑧 ( 𝜑𝑧𝑥 ) ↔ ∃ 𝑦𝑧 ( 𝑧𝑦𝜑 ) )