Step |
Hyp |
Ref |
Expression |
1 |
|
bm1.3ii.1 |
⊢ ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑥 ) |
2 |
|
19.42v |
⊢ ( ∃ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) ↔ ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) ) |
3 |
|
bimsc1 |
⊢ ( ( ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) → ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ) |
4 |
3
|
alanimi |
⊢ ( ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) → ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ) |
5 |
4
|
eximi |
⊢ ( ∃ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) → ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ) |
6 |
2 5
|
sylbir |
⊢ ( ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) → ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ) |
7 |
|
elequ2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 → 𝑦 ∈ 𝑥 ) ↔ ( 𝜑 → 𝑦 ∈ 𝑧 ) ) ) |
9 |
8
|
albidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ) ) |
10 |
9
|
cbvexvw |
⊢ ( ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ) |
11 |
1 10
|
mpbi |
⊢ ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) |
12 |
|
ax-sep |
⊢ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) |
13 |
11 12
|
exan |
⊢ ∃ 𝑧 ( ∀ 𝑦 ( 𝜑 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑧 ∧ 𝜑 ) ) ) |
14 |
6 13
|
exlimiiv |
⊢ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) |