Metamath Proof Explorer


Theorem bj-cbv2v

Description: Version of cbv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbv2v.1 xφ
bj-cbv2v.2 yφ
bj-cbv2v.3 φyψ
bj-cbv2v.4 φxχ
bj-cbv2v.5 φx=yψχ
Assertion bj-cbv2v φxψyχ

Proof

Step Hyp Ref Expression
1 bj-cbv2v.1 xφ
2 bj-cbv2v.2 yφ
3 bj-cbv2v.3 φyψ
4 bj-cbv2v.4 φxχ
5 bj-cbv2v.5 φx=yψχ
6 2 nf5ri φyφ
7 1 nfal xyφ
8 7 nf5ri yφxyφ
9 6 8 syl φxyφ
10 3 nf5rd φψyψ
11 4 nf5rd φχxχ
12 10 11 5 bj-cbv2hv xyφxψyχ
13 9 12 syl φxψyχ