Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for BJ First-order logic Removing dependencies on ax-13 (and ax-11) bj-cbv2v  
				
		 
		
			
		 
		Description:   Version of cbv2  with a disjoint variable condition, which does not
       require ax-13  .  (Contributed by BJ , 16-Jun-2019) 
       (Proof modification is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						bj-cbv2v.1   ⊢   Ⅎ  x   φ        
					 
					
						bj-cbv2v.2   ⊢   Ⅎ  y   φ        
					 
					
						bj-cbv2v.3    ⊢   φ   →   Ⅎ  y   ψ          
					 
					
						bj-cbv2v.4    ⊢   φ   →   Ⅎ  x   χ          
					 
					
						bj-cbv2v.5    ⊢   φ   →    x  =  y    →    ψ   ↔   χ          
					 
				
					Assertion 
					bj-cbv2v    ⊢   φ   →    ∀  x   ψ     ↔   ∀  y   χ           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							bj-cbv2v.1  ⊢   Ⅎ  x   φ        
						
							2 
								
							 
							bj-cbv2v.2  ⊢   Ⅎ  y   φ        
						
							3 
								
							 
							bj-cbv2v.3   ⊢   φ   →   Ⅎ  y   ψ          
						
							4 
								
							 
							bj-cbv2v.4   ⊢   φ   →   Ⅎ  x   χ          
						
							5 
								
							 
							bj-cbv2v.5   ⊢   φ   →    x  =  y    →    ψ   ↔   χ          
						
							6 
								2 
							 
							nf5ri   ⊢   φ   →   ∀  y   φ          
						
							7 
								1 
							 
							nfal  ⊢   Ⅎ  x   ∀  y   φ          
						
							8 
								7 
							 
							nf5ri   ⊢   ∀  y   φ     →   ∀  x   ∀  y   φ            
						
							9 
								6  8 
							 
							syl   ⊢   φ   →   ∀  x   ∀  y   φ            
						
							10 
								3 
							 
							nf5rd   ⊢   φ   →    ψ   →   ∀  y   ψ           
						
							11 
								4 
							 
							nf5rd   ⊢   φ   →    χ   →   ∀  x   χ           
						
							12 
								10  11  5 
							 
							bj-cbv2hv   ⊢   ∀  x   ∀  y   φ       →    ∀  x   ψ     ↔   ∀  y   χ           
						
							13 
								9  12 
							 
							syl   ⊢   φ   →    ∀  x   ψ     ↔   ∀  y   χ