Metamath Proof Explorer


Theorem bj-cbv3tb

Description: Closed form of cbv3 . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-cbv3tb xyx=yφψyxψxyφxφyψ

Proof

Step Hyp Ref Expression
1 19.9t xψxψψ
2 1 biimpd xψxψψ
3 2 alimi yxψyxψψ
4 nf5r yφφyφ
5 4 alimi xyφxφyφ
6 bj-cbv3ta xyx=yφψyxψψxφyφxφyψ
7 3 5 6 syl2ani xyx=yφψyxψxyφxφyψ