Metamath Proof Explorer


Theorem bj-cbval

Description: Changing a bound variable (universal quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbval.denote yxx=y
bj-cbval.denote2 xyy=x
bj-cbval.maj x=yφψ
bj-cbval.equcomiv y=xx=y
Assertion bj-cbval xφyψ

Proof

Step Hyp Ref Expression
1 bj-cbval.denote yxx=y
2 bj-cbval.denote2 xyy=x
3 bj-cbval.maj x=yφψ
4 bj-cbval.equcomiv y=xx=y
5 3 biimpd x=yφψ
6 5 1 bj-cbvalimi xφyψ
7 3 biimprd x=yψφ
8 4 7 syl y=xψφ
9 8 2 bj-cbvalimi yψxφ
10 6 9 impbii xφyψ