Metamath Proof Explorer


Theorem bj-cbvex

Description: Changing a bound variable (existential quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbval.denote yxx=y
bj-cbval.denote2 xyy=x
bj-cbval.maj x=yφψ
bj-cbval.equcomiv y=xx=y
Assertion bj-cbvex xφyψ

Proof

Step Hyp Ref Expression
1 bj-cbval.denote yxx=y
2 bj-cbval.denote2 xyy=x
3 bj-cbval.maj x=yφψ
4 bj-cbval.equcomiv y=xx=y
5 3 biimpd x=yφψ
6 4 5 syl y=xφψ
7 6 2 bj-cbveximi xφyψ
8 3 biimprd x=yψφ
9 8 1 bj-cbveximi yψxφ
10 7 9 impbii xφyψ