Metamath Proof Explorer


Theorem bj-cbvexivw

Description: Change bound variable. This is to cbvexvw what cbvalivw is to cbvalvw . TODO: move after cbvalivw . (Contributed by BJ, 17-Mar-2020)

Ref Expression
Hypothesis bj-cbvexivw.1 y = x φ ψ
Assertion bj-cbvexivw x φ y ψ

Proof

Step Hyp Ref Expression
1 bj-cbvexivw.1 y = x φ ψ
2 ax5e x y ψ y ψ
3 ax-5 φ y φ
4 2 3 1 bj-cbvexiw x φ y ψ