Metamath Proof Explorer


Theorem bj-cbvexiw

Description: Change bound variable. This is to cbvexvw what cbvaliw is to cbvalvw . TODO: move after cbvalivw . (Contributed by BJ, 17-Mar-2020)

Ref Expression
Hypotheses bj-cbvexiw.1 x y ψ y ψ
bj-cbvexiw.2 φ y φ
bj-cbvexiw.3 y = x φ ψ
Assertion bj-cbvexiw x φ y ψ

Proof

Step Hyp Ref Expression
1 bj-cbvexiw.1 x y ψ y ψ
2 bj-cbvexiw.2 φ y φ
3 bj-cbvexiw.3 y = x φ ψ
4 2 3 spimew φ y ψ
5 1 4 bj-sylge x φ y ψ