Metamath Proof Explorer


Theorem bj-cbvexiw

Description: Change bound variable. This is to cbvexvw what cbvaliw is to cbvalvw . TODO: move after cbvalivw . (Contributed by BJ, 17-Mar-2020)

Ref Expression
Hypotheses bj-cbvexiw.1 ( ∃ 𝑥𝑦 𝜓 → ∃ 𝑦 𝜓 )
bj-cbvexiw.2 ( 𝜑 → ∀ 𝑦 𝜑 )
bj-cbvexiw.3 ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
Assertion bj-cbvexiw ( ∃ 𝑥 𝜑 → ∃ 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 bj-cbvexiw.1 ( ∃ 𝑥𝑦 𝜓 → ∃ 𝑦 𝜓 )
2 bj-cbvexiw.2 ( 𝜑 → ∀ 𝑦 𝜑 )
3 bj-cbvexiw.3 ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
4 2 3 spimew ( 𝜑 → ∃ 𝑦 𝜓 )
5 1 4 bj-sylge ( ∃ 𝑥 𝜑 → ∃ 𝑦 𝜓 )