Metamath Proof Explorer


Theorem bj-cbvexw

Description: Change bound variable. This is to cbvexvw what cbvalw is to cbvalvw . (Contributed by BJ, 17-Mar-2020)

Ref Expression
Hypotheses bj-cbvexw.1 x y ψ y ψ
bj-cbvexw.2 φ y φ
bj-cbvexw.3 y x φ x φ
bj-cbvexw.4 ψ x ψ
bj-cbvexw.5 x = y φ ψ
Assertion bj-cbvexw x φ y ψ

Proof

Step Hyp Ref Expression
1 bj-cbvexw.1 x y ψ y ψ
2 bj-cbvexw.2 φ y φ
3 bj-cbvexw.3 y x φ x φ
4 bj-cbvexw.4 ψ x ψ
5 bj-cbvexw.5 x = y φ ψ
6 5 equcoms y = x φ ψ
7 6 biimpd y = x φ ψ
8 1 2 7 bj-cbvexiw x φ y ψ
9 5 biimprd x = y ψ φ
10 3 4 9 bj-cbvexiw y ψ x φ
11 8 10 impbii x φ y ψ