Metamath Proof Explorer


Theorem bj-cbvexw

Description: Change bound variable. This is to cbvexvw what cbvalw is to cbvalvw . (Contributed by BJ, 17-Mar-2020)

Ref Expression
Hypotheses bj-cbvexw.1 ( ∃ 𝑥𝑦 𝜓 → ∃ 𝑦 𝜓 )
bj-cbvexw.2 ( 𝜑 → ∀ 𝑦 𝜑 )
bj-cbvexw.3 ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥 𝜑 )
bj-cbvexw.4 ( 𝜓 → ∀ 𝑥 𝜓 )
bj-cbvexw.5 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion bj-cbvexw ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 bj-cbvexw.1 ( ∃ 𝑥𝑦 𝜓 → ∃ 𝑦 𝜓 )
2 bj-cbvexw.2 ( 𝜑 → ∀ 𝑦 𝜑 )
3 bj-cbvexw.3 ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥 𝜑 )
4 bj-cbvexw.4 ( 𝜓 → ∀ 𝑥 𝜓 )
5 bj-cbvexw.5 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
6 5 equcoms ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
7 6 biimpd ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
8 1 2 7 bj-cbvexiw ( ∃ 𝑥 𝜑 → ∃ 𝑦 𝜓 )
9 5 biimprd ( 𝑥 = 𝑦 → ( 𝜓𝜑 ) )
10 3 4 9 bj-cbvexiw ( ∃ 𝑦 𝜓 → ∃ 𝑥 𝜑 )
11 8 10 impbii ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 )