Metamath Proof Explorer
Description: Change bound variable. This is to cbvexvw what cbvalw is to
cbvalvw . (Contributed by BJ, 17-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
bj-cbvexw.1 |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜓 → ∃ 𝑦 𝜓 ) |
|
|
bj-cbvexw.2 |
⊢ ( 𝜑 → ∀ 𝑦 𝜑 ) |
|
|
bj-cbvexw.3 |
⊢ ( ∃ 𝑦 ∃ 𝑥 𝜑 → ∃ 𝑥 𝜑 ) |
|
|
bj-cbvexw.4 |
⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) |
|
|
bj-cbvexw.5 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
bj-cbvexw |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bj-cbvexw.1 |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜓 → ∃ 𝑦 𝜓 ) |
2 |
|
bj-cbvexw.2 |
⊢ ( 𝜑 → ∀ 𝑦 𝜑 ) |
3 |
|
bj-cbvexw.3 |
⊢ ( ∃ 𝑦 ∃ 𝑥 𝜑 → ∃ 𝑥 𝜑 ) |
4 |
|
bj-cbvexw.4 |
⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) |
5 |
|
bj-cbvexw.5 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
6 |
5
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜓 ) ) |
7 |
6
|
biimpd |
⊢ ( 𝑦 = 𝑥 → ( 𝜑 → 𝜓 ) ) |
8 |
1 2 7
|
bj-cbvexiw |
⊢ ( ∃ 𝑥 𝜑 → ∃ 𝑦 𝜓 ) |
9 |
5
|
biimprd |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 → 𝜑 ) ) |
10 |
3 4 9
|
bj-cbvexiw |
⊢ ( ∃ 𝑦 𝜓 → ∃ 𝑥 𝜑 ) |
11 |
8 10
|
impbii |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 ) |