Description: Change bound variable. This is to cbvexvw what cbvalw is to cbvalvw . (Contributed by BJ, 17-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-cbvexw.1 | |- ( E. x E. y ps -> E. y ps ) |
|
bj-cbvexw.2 | |- ( ph -> A. y ph ) |
||
bj-cbvexw.3 | |- ( E. y E. x ph -> E. x ph ) |
||
bj-cbvexw.4 | |- ( ps -> A. x ps ) |
||
bj-cbvexw.5 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | bj-cbvexw | |- ( E. x ph <-> E. y ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-cbvexw.1 | |- ( E. x E. y ps -> E. y ps ) |
|
2 | bj-cbvexw.2 | |- ( ph -> A. y ph ) |
|
3 | bj-cbvexw.3 | |- ( E. y E. x ph -> E. x ph ) |
|
4 | bj-cbvexw.4 | |- ( ps -> A. x ps ) |
|
5 | bj-cbvexw.5 | |- ( x = y -> ( ph <-> ps ) ) |
|
6 | 5 | equcoms | |- ( y = x -> ( ph <-> ps ) ) |
7 | 6 | biimpd | |- ( y = x -> ( ph -> ps ) ) |
8 | 1 2 7 | bj-cbvexiw | |- ( E. x ph -> E. y ps ) |
9 | 5 | biimprd | |- ( x = y -> ( ps -> ph ) ) |
10 | 3 4 9 | bj-cbvexiw | |- ( E. y ps -> E. x ph ) |
11 | 8 10 | impbii | |- ( E. x ph <-> E. y ps ) |