Metamath Proof Explorer


Theorem bj-cbvexw

Description: Change bound variable. This is to cbvexvw what cbvalw is to cbvalvw . (Contributed by BJ, 17-Mar-2020)

Ref Expression
Hypotheses bj-cbvexw.1
|- ( E. x E. y ps -> E. y ps )
bj-cbvexw.2
|- ( ph -> A. y ph )
bj-cbvexw.3
|- ( E. y E. x ph -> E. x ph )
bj-cbvexw.4
|- ( ps -> A. x ps )
bj-cbvexw.5
|- ( x = y -> ( ph <-> ps ) )
Assertion bj-cbvexw
|- ( E. x ph <-> E. y ps )

Proof

Step Hyp Ref Expression
1 bj-cbvexw.1
 |-  ( E. x E. y ps -> E. y ps )
2 bj-cbvexw.2
 |-  ( ph -> A. y ph )
3 bj-cbvexw.3
 |-  ( E. y E. x ph -> E. x ph )
4 bj-cbvexw.4
 |-  ( ps -> A. x ps )
5 bj-cbvexw.5
 |-  ( x = y -> ( ph <-> ps ) )
6 5 equcoms
 |-  ( y = x -> ( ph <-> ps ) )
7 6 biimpd
 |-  ( y = x -> ( ph -> ps ) )
8 1 2 7 bj-cbvexiw
 |-  ( E. x ph -> E. y ps )
9 5 biimprd
 |-  ( x = y -> ( ps -> ph ) )
10 3 4 9 bj-cbvexiw
 |-  ( E. y ps -> E. x ph )
11 8 10 impbii
 |-  ( E. x ph <-> E. y ps )