Metamath Proof Explorer


Theorem bj-cleljusti

Description: One direction of cleljust , requiring only ax-1 -- ax-5 and ax8v1 . (Contributed by BJ, 31-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-cleljusti z z = x z y x y

Proof

Step Hyp Ref Expression
1 ax8v1 z = x z y x y
2 1 imp z = x z y x y
3 2 exlimiv z z = x z y x y