Metamath Proof Explorer


Theorem bj-clex

Description: Two ways of stating that a class is a set. (Contributed by BJ, 18-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-clex.1 x A φ
Assertion bj-clex A V y x x y φ

Proof

Step Hyp Ref Expression
1 bj-clex.1 x A φ
2 isset A V y y = A
3 dfcleq y = A x x y x A
4 1 bibi2i x y x A x y φ
5 4 albii x x y x A x x y φ
6 3 5 bitri y = A x x y φ
7 6 exbii y y = A y x x y φ
8 2 7 bitri A V y x x y φ