Metamath Proof Explorer


Theorem bj-dfid2ALT

Description: Alternate version of dfid2 . (Contributed by BJ, 9-Nov-2024) (Proof modification is discouraged.) Use df-id instead to make the semantics of the construction df-opab clearer. (New usage is discouraged.)

Ref Expression
Assertion bj-dfid2ALT I = x x |

Proof

Step Hyp Ref Expression
1 df-id I = x y | x = y
2 equcomi x = y y = x
3 2 opeq2d x = y x y = x x
4 3 eqeq2d x = y z = x y z = x x
5 4 pm5.32ri z = x y x = y z = x x x = y
6 5 exbii y z = x y x = y y z = x x x = y
7 ax6evr y x = y
8 19.42v y z = x x x = y z = x x y x = y
9 7 8 mpbiran2 y z = x x x = y z = x x
10 6 9 bitri y z = x y x = y z = x x
11 10 exbii x y z = x y x = y x z = x x
12 id x = u x = u
13 12 12 opeq12d x = u x x = u u
14 13 eqeq2d x = u z = x x z = u u
15 14 exexw x z = x x x x z = x x
16 11 15 bitri x y z = x y x = y x x z = x x
17 tru
18 17 biantru z = x x z = x x
19 18 exbii x z = x x x z = x x
20 19 exbii x x z = x x x x z = x x
21 16 20 bitri x y z = x y x = y x x z = x x
22 21 abbii z | x y z = x y x = y = z | x x z = x x
23 df-opab x y | x = y = z | x y z = x y x = y
24 df-opab x x | = z | x x z = x x
25 22 23 24 3eqtr4i x y | x = y = x x |
26 1 25 eqtri I = x x |