Metamath Proof Explorer


Theorem bj-dfid2ALT

Description: Alternate version of dfid2 . (Contributed by BJ, 9-Nov-2024) (Proof modification is discouraged.) Use df-id instead to make the semantics of the construction df-opab clearer. (New usage is discouraged.)

Ref Expression
Assertion bj-dfid2ALT I=xx|

Proof

Step Hyp Ref Expression
1 df-id I=xy|x=y
2 equcomi x=yy=x
3 2 opeq2d x=yxy=xx
4 3 eqeq2d x=yz=xyz=xx
5 4 pm5.32ri z=xyx=yz=xxx=y
6 5 exbii yz=xyx=yyz=xxx=y
7 ax6evr yx=y
8 19.42v yz=xxx=yz=xxyx=y
9 7 8 mpbiran2 yz=xxx=yz=xx
10 6 9 bitri yz=xyx=yz=xx
11 10 exbii xyz=xyx=yxz=xx
12 id x=ux=u
13 12 12 opeq12d x=uxx=uu
14 13 eqeq2d x=uz=xxz=uu
15 14 exexw xz=xxxxz=xx
16 11 15 bitri xyz=xyx=yxxz=xx
17 tru
18 17 biantru z=xxz=xx
19 18 exbii xz=xxxz=xx
20 19 exbii xxz=xxxxz=xx
21 16 20 bitri xyz=xyx=yxxz=xx
22 21 abbii z|xyz=xyx=y=z|xxz=xx
23 df-opab xy|x=y=z|xyz=xyx=y
24 df-opab xx|=z|xxz=xx
25 22 23 24 3eqtr4i xy|x=y=xx|
26 1 25 eqtri I=xx|